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approximation and the background and boundary conditions in 5D. We also establish a

connection between the Migdal approach and the models of deconstructed dimensions.

Keywords: Large Extra Dimensions, AdS-CFT Correspondence, 1/N Expansion,

Phenomenological Models.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep022007086/jhep022007086.pdf

mailto:adam.falkowski@cern.ch
mailto:mpv@cern.ch
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
7
)
0
8
6

Contents

1. Introduction 1

2. Migdal’s approximation in examples 4
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1. Introduction

Holography relates strongly-coupled gauge theories to weakly-coupled theories in higher

dimensions. The original conjecture [1] connects type IIB string theory in the gravita-

tional AdS5 × S5 background to the 4D N = 4 SU(Nc) superconformal field theory. This

correspondence can be extended to other asymptotically-AdS [2] spaces, and examples

of geometries in which conformal invariance is broken in the IR are known (see, for in-

stance, [3] and references therein). From a phenomenological point of view, it is often

sufficient to consider the simpler relation between non-supersymmetric 5D field theories in

a Randall-Sundrum [4] background and 4D large-Nc strongly-coupled theories with con-

formal invariance spontaneously broken [5]. This can be applied, for example, in studying

properties of QCD at large Nc [6] or to clarify the physics of electroweak symmetry breaking

by strong dynamics [7].

The 5D setup involves a slice of AdS5 truncated by two branes at z = zUV and z =

zIR. The bulk hosts 5D gauge and, possibly, other spin fields, which represent composite

operators of the dual CFT. One way to probe the dynamics of such theories is to compute
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UV boundary correlators of the 5D bulk fields. For example, the 1PI two-point correlation

function of boundary gauge fields is given by the expression
∫

d4xe−ipx〈Aµ(x)Aµ(0)〉1PI =

(

−ηµν +
pµpν

p2

)

Π(p2), Π(p) ∼ ∂zG(z, p)

G(z, p)

∣

∣

∣

∣

z=zUV

,

(1.1)

where G(z, p) is a solution of the 5D equations of motion subject to appropriate boundary

conditions at the IR brane. The holographic dictionary relates this boundary correlator to

the connected two-point correlation function of a conserved global symmetry current of the

4D CFT. The poles of this correlation function are interpreted as resonances of the CFT.

There exists another, seemingly unrelated approach to computing correlation func-

tions in 4D strongly coupled large-Nc theories, which was proposed long ago by Migdal [8].

The program of Migdal aims at reproducing the gauge theory correlators at low p2 using

information about the deep Euclidean regime. The main input is the non-analytic be-

haviour of the correlation functions at large Euclidean momenta, where the correlators,

at leading order, exhibit a conformal behaviour, limp2→−∞ Π(p) ≡ f(p2) ∼ −p2n log(−p2).

This asymptotic expression is approximated by a ratio of two polynomials of degree N ,

f(p2) ≈ RN (p2)/SN (p2), by means of a Padé approximation. Finally, the result is analyti-

cally continued to low time-like p2 and the large-N limit is taken.

It was recently pointed out by Shifman [9] and Voloshin, and shown in detail by

Erlich et al. [10], that Migdal’s procedure gives results similar to those of 5D holographic

computations. Indeed, performing a series of Padé approximations on the input function

f(p2) = − log(−p2/µ2), one obtains [10], for large N ,

f(p2) → − log(p2/µ2)J0(2Np/µ) + πY0(2Np/µ)

J0(2Np/µ)
(1.2)

The same result would be obtained if we performed a computation of the boundary gauge

field correlator in the Randall-Sundrum spacetime, with zIR = 2N/µ and zUV = 1/µ → 0.

In fact, the similarity of the two approaches is not restricted to AdS5. For example,

Padé approximations of the input function f(p2) = (−p2/µ2)−1/2 lead to a result that

again coincides with the 5D boundary gauge correlator, but this time computed in the 5D

Minkowski background.1

This coincidence seems quite mysterious, as the Migdal approach never makes any

reference to extra dimensions. Of course, the main ingredient of both methods, and the

one that allows us to make contact with a large-Nc theory, is that the correlation functions

are meromorphic. But this does not determine them uniquely. Actually, the success of the

Migdal approach and its relation to holographic calculations raises a number of questions:

i) Why, in the first place, can the series of Padé approximants be interpreted as physical

correlation functions of a large-Nc gauge theory? The physical interpretation of the

results obtained by Migdal is possible because the Padé approximants have only

simple poles, with negative residues on the positive real p2 axis. This is not a generic

feature of Padé approximants.

1This was first observed by Gherghetta, Pomarol and Rattazzi [11].
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ii) Why, in the large-N limit, do we recover correlators characteristic of theories in 5D?

The distinguishing feature of 5D models is locality in the fifth coordinate. How is

this locality encoded in the Migdal approach?

iii) Which 5D geometries and which IR boundary conditions can be reproduced by the

Migdal approach?

iv) Does the Migdal procedure at finite N also correspond to some physical setup? There

is a tantalizing similarity between the correlators computed in the Migdal approach

and those obtained in deconstruction [12]. Both express the polarization function

as a ratio of two polynomials in p2, which converges to a non-analytic function for

large N and large Euclidean momentum (see [13] for a computation in deconstructed

AdS5). Is there a precise quantitative connection between the two approaches?

In this paper we provide answers to these questions. The first one was, in fact, already

addressed in Migdal’s original papers [8]. It turns out that the nice physical properties of

Padé approximants arise because the input function belongs to the class of so-called Stieltjes

functions. In the mathematical literature, Padé approximants of Stieltjes functions have

been extensively studied, and a connection to orthogonal polynomials has been established.

The physical properties of Padé approximants are intimately related to certain familiar

properties of orthogonal polynomials.

One well-known property of orthogonal polynomials is that they satisfy a second-order

recursion relation in the polynomial degree: πN+1(w) = (anw + bn)πN (w) − cnπN−1(w).

We show that the connection between Padé approximation and orthogonal polynomials

implies that the polynomials entering the Padé approximants also satisfy a second-order

recursion relation:

TN+1(p
2) = AN (p2)TN (p2) − BN (p2)TN−1(p

2) , (1.3)

where T = R,S. Hence, Padé approximants implement automatically a form of locality in

the discrete space of the polynomial degrees. For large N , this recursion relation reduces to

a second order differential equation, whose form is analogous to equations of motion in 5D

theories. We discuss the necessary condition for the large-N limit of the Migdal approach to

correspond to sensible 5D setups and find which geometries and which boundary conditions

can be matched. We shall see that the precise manner in which the limit is taken is

important.

Finally, we study the relation between Migdal’s approach at finite N and deconstruc-

tion. Deconstruction is a four-dimensional framework that involves a product gauge group

GN and a set of bifundamental non-linear sigma model fields (the links) [12]. Deconstruc-

tion models are parametrized by a set of gauge couplings gj and decay constants vj . For

large N such setup is related to a 5D gauge theory with the gauge group G, where the

fifth dimension is latticized. Each choice of gj and vj on the deconstruction side corre-

sponds to some 5D warped geometry, and the dictionary between the two frameworks has

been established [14]. In this paper we quantify the relation between deconstruction and

the Migdal approach. We show that, given the coefficient of the recursion relation for
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Padé approximants, we can identify the deconstruction parameters that yield the same

polarization function as the Migdal approach. An unexpected result is that deconstruction

models directly related to the Migdal approach are non-minimal; they must include the

kinetic mixing between neighbouring gauge fields from the product group. This, however,

corresponds to an irrelevant operator in the continuum limit.

The paper is organized as follows. In section 2 we present several examples that

illustrate the connection of the Migdal approach with 5D theories. In section 3 we review

the mathematical results connecting Padé approximants of Stieltjes functions to orthogonal

polynomials. The large-N limit of Padé approximants of Stieltjes functions is studied in

section 4 and the relation to 5D theories is quantified in section 5. In section 6 we discuss

the connection of Migdal approximation at finite N to 4D deconstruction models. Section 7

contains our conclusions, and in the appendix we derive the holographic formula for two-

point functions in deconstruction.

2. Migdal’s approximation in examples

For two-point correlation functions, the deep Euclidean limit p2 → −∞ is a function f(t)

depending on a variable t = p2/µ2, where µ is an arbitrary renormalization scale. The

function f(t) has a branch cut along the positive real axis and contains a perturbative

piece plus power corrections induced by the condensates. We will be interested in the

perturbative part only. Migdal proposes to compute Padé approximants of f(t) at some

Euclidean point −λ < 0. The Padé approximant is given by a ratio of two polynomials of

degrees M and N , such that its Taylor expansion around t = −λ matches that of f(t) to

order (t + λ)M+N+1. Under certain assumptions, this series of approximants converges to

f(t) when M,N → ∞. The idea of Migdal is to take instead a combined limit N → ∞,

t → 0, keeping t̃ = tN2 and M −N fixed. For finite momentum p, this amounts to sending

N and µ to infinity with µ̃ = µ/N fixed. We call this the Migdal limit. In this limit, the

spacing between the poles of the Padé approximants is controlled by the scale µ̃ introduced

in the limiting process. Intuitively, even though the spacing between poles goes to zero at

large N , so as to reproduce the branch cut, zooming in the small t region simultaneously

allows to resolve them. It turns out that, for the functions f(t) of interest, the limiting

expression has only simple poles located at timelike momenta and with negative residues.

Therefore, the Migdal limit of f(t) can be interpreted as the complete two-point function in

the large Nc limit. By construction, this function has the correct deep Euclidean behaviour.

In this section we present several examples of the Migdal procedure. The details of

the calculations are postponed until section 3, where we present a generalized approach to

this kind of computation.

We start with the example discussed in [10]. The two-point correlation function of two

conserved vector currents has the general form

Πµν(p) =

(

pµpν

p2
− ηµν

)

Π(p2). (2.1)
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For the vector and axial currents in QCD, the leading perturbative contribution to Π(p2)

at large Euclidean momentum p2 < 0 is proportional to −p2 log(−p2/µ2).2 Ignoring mul-

tiplicative constants, we take f(t + 1) = − log(−t). Next, we approximate f(t + 1) by

ΠN = t[N/N ]f , where [M/N ]f = [N + J/N ]f = RJ
N/SJ

N is the Padé approximant to

f(t + 1) at t = −1, with RJ
N and SJ

N polynomials in t of degree M = N + J and N ,

respectively. These polynomial can be determined to be

R0
N (t) = (t + 1)N P̄N

(

1 − t

1 + t

)

, S0
N (t) = (t + 1)NPN

(

1 − t

1 + t

)

, (2.2)

with PN the Legendre polynomial of degree N and P̄N the associated Legendre polynomial

(see the next section for the definition of associated orthogonal polynomials). The factors

(t + 1)N in (2.2) cancel out; their role is only to make R0
N and S0

N polynomials in t. In the

Migdal limit, R0
N and S0

N approach

R(t) = −t log(t)J0

(

2
√

t̃
)

+ πtY0

(

2
√

t̃
)

, (2.3)

S(t) = J0

(

2
√

t̃
)

. (2.4)

On the other hand, a calculation of the two-point boundary correlator for a gauge field in

AdS5 with Neumann boundary conditions at the IR brane yields [5], in the limit zUV → 0,

Π(p2) ∼ p2− log(pzUV)J0 (pzIR) + πY0 (pzIR)

J0 (pzIR)
(2.5)

We see that identifying µ ↔ z−1
UV, µ̃ ↔ 2z−1

IR the result ΠMigdal = tR/S agrees precisely

with the corresponding holographic calculation. Note that, according to the dictionary

above and the definition of µ̃, 2N corresponds to the inverse warp factor zIR/zUV.

At this point it is natural to wonder why the Padé approximant chooses Neumann con-

ditions. Our next example shows that we have actually made this choice when identifying

the function f(t), leaving the factor t outside of the Padé approximation. Indeed, let us

take instead f(t + 1) = −t log(−t), compute the [N + 1/N ] Padé approximant to f(t + 1)

at t = −1 and define ΠN (t) = [N + 1/N ]f = R1
N/S1

N . It is clear that this keeps the same

asymptotic function as before. The reason for increasing the degree of the numerator is

to improve the convergence at large |t|. This technical point will be clarified in the next

section. The result is

R1
N (t) = (t + 1)N+1

[

−P
(1,0)
N

(

1 − t

1 + t

)

+ P̄
(1,0)
N

(

1 − t

1 + t

)]

, (2.6)

S1
N (t) = (t + 1)NP

(1,0)
N

(

1 − t

1 + t

)

, (2.7)

2We take the principal branch of the logarithm with the branch cut along the real negative axis (argument

θ ∈ (−π, π]), and define accordingly non-integer powers. The signature of the metric is mostly minus.

Physical amplitudes at time-like momenta are evaluated with p2 right above the positive real axis.
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with (P̄
(α,β)
N ) P

(α,β)
N (associated) Jacobi polynomials. The Migdal limit yields, up to nor-

malization,

R(t) = −t log(t)
1√
t̃
J1

(

2
√

t̃
)

+ πtY1
1√
t̃

(

2
√

t̃
)

, (2.8)

S(t) =
1√
t̃
J1

(

2
√

t̃
)

. (2.9)

The result ΠMigdal = R/S is identical to the holographic one for zUV → 0, with the same

identifications as before, but this time with Dirichlet boundary conditions at the IR brane.

Now, let us consider a different asymptotic behaviour in the deep Euclidean regime.

We assume that the polarization function of two vector currents approaches −(−t)1/2 for

t → ∞. This behaviour is very different from the one encountered in QCD. Instead, it

is the prediction of a holographic calculation in an asymptotically flat space. Let us first

compute ΠN (t) = t[N/N ]f = tR0
N/S0

N with f(t + 1) = (−t)−1/2. We obtain

R0
N (t) = (t + 1)N

[

P
−1/2,1/2
N

(

1 − t

1 + t

)

+ P̄
−1/2,1/2
N

(

1 − t

1 + t

)]

, (2.10)

S0
N (t) = (t + 1)NP

−1/2,1/2
N

(

1 − t

1 + t

)

, (2.11)

and in the Migdal limit,

R(t) =
1√
t
sin

(

2
√

t̃
)

, (2.12)

S(t) = cos
(

2
√

t̃
)

. (2.13)

In this case, ΠMigdal = tR/S agrees with the holographic two-point function in 5D

Minkowski space with Neumann boundary conditions at the IR brane! Choosing instead

f(t + 1) = −(−t)1/2 and ΠN (t) = [N/N ]f , we arrive at

R0
N (t) = (t + 1)N

[

−P
1/2,−1/2
N

(

1 − t

1 + t

)

+ P̄
1/2,−1/2
N

(

1 − t

1 + t

)]

, (2.14)

S0
N (t) = (t + 1)NP

1/2,−1/2
N

(

1 − t

1 + t

)

, (2.15)

with the Migdal limit

R(t) = − cos
(

2
√

t̃
)

, (2.16)

S(t) =
1√
t
sin

(

2
√

t̃
)

. (2.17)

As could be already guessed, ΠMigdal = R/S is in this case the same as the holographic

two-point function in 5D Minkowski space with Dirichlet boundary conditions on the IR

brane.

We have given several examples in which the Migdal procedure in a mysterious way

reconstructs the full 5D correlation functions from information about the deep Euclidean
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limit. One should be however aware that this “magic” does not always work. For example,

let us try to reproduce the result for the two-point function of a scalar operator of conformal

dimension 3, which is dual to a massive scalar in AdS5, with mass M2 = −3k2. The

asymptotic result of the AdS calculation in the deep Euclidean is, up to a constant term,

−t log(−t). This is the same as for gauge bosons, except for the constant term. But the

Padé approximant is determined essentially by the non-analytic piece of the function, as

we discuss in the next section. Therefore, choosing f(t + 1) = − log(−t) (and multiplying

by t at the end) or f(t + 1) = −t log(−t), we arrive at the same Padé approximants as

in the first two examples. In the second case, when a local polynomial term is added, we

reproduce the holographic result for the massive scalar with Dirichlet boundary conditions.

However, the first choice does not give the holographic function for Neumann boundary

conditions, but rather one with mixed boundary conditions on the IR brane.

3. Padé approximants and orthogonal polynomials

In this section, following mathematical literature [15], we present a more systematical

approach to Padé approximants. Given a function f(s) with a Taylor expansion at s = 0

we can define the Padé approximant as follows. We introduce two polynomials RJ
N (s),

SJ
N (s) of degrees N + J , N , respectively. We choose them such that their ratio has a

Taylor expansion at s = 0 that matches the Taylor expansion of f(s) up to terms of order

s2N+J+1:
RJ

N (s)

SJ
N (s)

= f(s) + O(s2N+J+1) (3.1)

We also assume SJ
N(0) 6= 0. The Padé approximant is defined as

[N + J/N ]f (s) =
RJ

N (s)

SJ
N (s)

. (3.2)

We will often omit the specification of the function and/or the variable, and write simply

[N +J/N ]. Note that RJ
N and SJ

N are determined up to normalization only, and that both

depend on N and J . In the following we will restrict the input function f to be a Stieltjes

function. The input functions we studied in the previous section belong to this class up

to a certain number of subtractions, as we discuss at the end of this section. A Stieltjes

function is defined by the Stieltjes integral representation

f(s) =

∫ λ−1

0

dφ(u)

1 − su
(3.3)

where φ(u) is a bounded, nondecreasing function on 0 ≤ u < ∞, with finite real-valued

moments

fj =

∫ λ−1

0
ujdφ(u) , j = 0, 1, 2, . . . , (3.4)

and λ > 0. An expansion of (3.3) in power series at s = 0 gives the Taylor series

f(s) =

∞
∑

j=0

fjs
j, (3.5)
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λ

Figure 1: The contour of integration Γ.

which converges in the open disk |s| < λ. We assume in the following that the function

φ(u) is strictly increasing (and hence the measure strictly positive) except for, at most, a

discrete number of points. Then, f(s) has a branch cut along λ < s < ∞.

There is a remarkable connection between Padé approximants and orthogonal polyno-

mials, which we derive next (for reviews of orthogonal polynomials see, for instance, [16]).

From the defining equation (3.1), it is clear that

dm

dsm

(

f(s)SJ
N(s)

)∣

∣

s=0
= 0, m = N + J + 1, . . . , 2N + J . (3.6)

Then we can use Cauchy’s integral formula to write these conditions in the form of contour

integrals:
∫

Γ
dz

SJ
N (z)f(z)

zm+1
= 0, m = N + J + 1, . . . , 2N + J (3.7)

with the path Γ displayed in figure 1. The integral along the small semicircle at λ vanishes

since, from its definition (3.3), f(z) has at most a logarithmic singularity at z = λ. The

integral along the big circle also vanishes when J ≥ −1. Finally, the remaining integrals

above and below the branch cut cancel except for the discontinuity in the imaginary part

of f(z). On the other hand, from (3.3) this jump is related to the measure dφ(u) = φ′(u)du

by

φ′(u−1) =
u

2πi

(

f(u + iε) − f(u − iε)
)

, λ < u < ∞. (3.8)

Therefore, for J ≥ −1 and any N ≥ 0,

∫ ∞

λ
φ′(u−1)

SJ
N (u)

um+2
= 0, m = N + J + 1, . . . , 2N + J. (3.9)

– 8 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
6

Changing variables to w = u−1 and shifting m → m − N − J − 1, we arrive at

∫ λ

0
dwW J(w)wm

(

wNSJ
N (w−1)

)

= 0, m = 0, . . . , N − 1, (3.10)

with W J(w) = wJ+1φ′(w). The factor in parenthesis is a polynomial of degree N .

Eq. (3.10) shows that the set of polynomials

πJ
N (w) = wNSJ

N (w−1), N = 0, 1, . . . (3.11)

is a system of orthogonal polynomials over the interval (0, λ−1) with weight W J(w). We

shall also use the notation dφJ(w) = wJ+1dφ(w) = W J(w)dw. Conversely,

SJ
N (s) = sNπN (s−1) . (3.12)

This determines the denominators of the Padé approximant [N +J/N ] up to normalization.

To calculate the numerators, let us define the function

F J(w) =

∫ λ−1

0

dφJ (u)

w − u
(3.13)

and the associated orthogonal polynomials

ρJ
N (w) =

∫ λ−1

0
dφJ (u)

πN (w) − πN (u)

w − u
, (3.14)

which have degree N − 1. Then,

πJ
N (w)F J (w) = ρJ

N (w) + ∆J
N (w) , (3.15)

where

∆(w) =

∫ λ−1

0
dφJ (u)

πN (u)

w − u

=
1

w

∫ λ−1

0
dφJ(u)

[

1 +
u

w
+ · · · +

( u

w

)N−1
+

( u

w

)N (

1 − u

w

)−1
]

= w−m−1

∫ λ−1

0
dφJ(u)

uN

1 − u/w
πN (3.16)

is of order w−N−1 at large |w|. On the other hand, expanding the integrand in the definition

of F (s) at u = 0 we find

F J(s−1) = s−J



f(s) −
J

∑

j=0

fjs
j



 . (3.17)

Therefore, we obtain

f(s) =

J
∑

j=0

fjs
j +

sJρJ
N (s−1)

πJ
N (s−1)

+ O(s2N+J), (3.18)
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so that the numerator of the Padé is

RJ
N (s) = SJ

N (s)

J
∑

j=0

fjs
j + sN+JρJ

N (s−1). (3.19)

We see that it is a polynomial of degree N + J , as required.

Putting all the pieces together, we have shown that the Padé approximants of a Stieltjes

function can be expressed as

[N + J/N ]f (s) =
J

∑

j=0

fjs
j +

sJρJ
N (s−1)

πJ
N (s−1)

. (3.20)

An important consequence of their relation to orthogonal polynomials is that the Padé

approximants (with J ≥ −1) of Stieltjes functions have only simple poles inside the open

interval (λ,∞), and all the residues are negative. This is the basic property which allows

to make contact with large-Nc and with holography at the classical level. It also follows

from (3.16) that the series of Padé approximants [N + J/N ] of f(s) converge to f(s) in

the limit N → ∞, for all J ≥ −1, in the region |s| < λ. (This is not necessarily so

for the Padé approximants of a general function.) The rate of convergence is geometric,

as ∆(w) ∼ O
(

w−N−1
)

. This can be extended, with weaker rate of convergence, to the

domain C\[λ,∞).

The orthogonal polynomials on the real line obey a three-term recurrence relation of

the form

πN+1(w) = (aNw + bN )πN − cNπN−1, (3.21)

with aN > 0, bN real constants and cN = (aNhN )/(aN−1hN−1), where

hN = 〈πN |πN 〉 =

∫

dwW (w)πN (w)2
∫

dwW (w)
(3.22)

is the squared norm. We shall call āN , b̄N , c̄N = āN/āN−1 the coefficients with normal-

ization hN = 1. The initial conditions for the recurrence relation are π−1 = 0 (or c0 = 0)

and π0 = C a nonvanishing constant. From their definition, it is clear that the associated

polynomials ρN satisfy the same recurrence relation but with initial conditions ρ0 = 0 and

ρ1 = a0C
∫

dwW (w). From (3.21), a three-term recurrence relation for Padé numerators

and denominators (3.23) follows:

T J
N+1(s) = (aJ

N + bJ
Ns)T J

N (s) − cJ
Ns2T J

N−1(s) , (3.23)

where T = R,S and we have explicitly indicated the dependence of the coefficients on J .

The equation is identical for S and R, but the initial conditions are not. These follow from

the ones for the orthogonal polynomials and associated orthogonal polynomials, respec-

tively. For instance, when J = −1, R−1
0 = 0, R−1

1 = const, S−1
−1 = 0, S−1

0 = const. Note

the factor s2 in the last term, which makes the equation different from the one for orthog-

onal polynomials. It can be shown that, because the weight function W has a compact

support, the combinations 1/āJ
N and b̄J

N/āJ
N will be bounded. It is possible to reverse our

– 10 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
6

line of argument taking us from a Stieltjes function to the recurrence relation (3.23) for its

Padé numerators and denominators. According to Favard’s theorem, a series of coefficients

{ān, b̄n} with bounded 1/āJ
N and b̄J

N/āJ
N determines a unique compactly supported mea-

sure dφ(u), and a system of orthogonal polynomials with respect to this measure, such that

these coefficients appear in their recurrence relation. The measure, in turn, determines the

Stieltjes function.

All the two-point asymptotic functions f(s) which appear in the conformal approxi-

mation (which in QCD applies to the leading and subleading perturbative contributions)

are of the form fn(s) = −(s − λ)n log(λ − s), with n a positive integer or zero, or

fν(s) = (−1)[ν]+1(λ − s)ν with ν a positive non-integer real number and [ν] the inte-

ger closest to ν with [ν] ≤ ν (the entire part for positive ν). The variable s is related

to t = p2/µ2 by s = t + λ. These functions are analytic at s = 0, and their Maclaurin

series have radius of convergence λ. On the other hand, the divergent behaviour at large

|s| can be taken care of by performing n + 1 or [ν] + 1 subtractions, respectively. The

subtracted functions are Stieltjes functions, and hence their Padé approximants satisfy all

the properties we have just derived. For instance, for f1(s) = (1 − s) log(1 − s), we need

two subtractions:

f̄1(s) = f1(s) − f1(0) − sf ′
1(0)

= (1 − s) log(s − 1) + s

= s2

∫ 1

0

1 − u

1 − su
du. (3.24)

So, f̄1/s
2 is a Stieltjes function, analytic inside the open circle of radius 1 centered at

s = 0. This equation is nothing but (3.17) with f̄1(s) = F J(s−1) and J = 2. Therefore,

the function

ΠN (s) = f1(0) + sf ′
1(0) + s2[N − 1/N ]f̄1

(s), (3.25)

is exactly the same as the Padé approximant [N + 1/N ]f1(s). It is clear that this is

generalized to J = m − 1 in the case of m subtractions.

Consider any fν(s) with real ν (possibly integer) and compute the [N + J/N ] as

above, with J ≥ [ν] − 1. Changing variables to x = 2w − 1 = (1 − t)/(1 + t) we find a

weight W J(x) = (1 − x)ν(1 − x)(J−ν) with x ∈ (−1, 1). Therefore, πJ
N (x) = P

(ν,J−ν)
N and

ρJ
N (x) = P̄

(ν,J−ν)
N , and the Padé approximant is

[N + J/N ]fν
=

J
∑

j=0

(fν)js
j +

sJ P̄
(ν,J−ν)
N

(

2−s
s

)

P
(ν,J−ν)
N

(

2−s
s

)

. (3.26)

From their integral representation given by (3.14), the associated Jacobi polynomials can be

written in terms of hypergeometric functions. Note that we should only consider functions

fν with ν > −1. In fact, when ν ≤ −1, the function fν is too divergent at s = λ to be a

Stieltjes function. Of course, the Padé approximant can still be calculated, but it will not

share the good (physical) properties we have derived in this section.
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4. Migdal’s limit

Let us study the Migdal limit of the Padé recurrence relation (3.23). We take λ = 1 and

call τ =
√

t (with τ positive for positive t). the Migdal limit is N → ∞ and τ → 0 with

fixed J and τ̃ = τN . To find the limit of equation (3.23), we write (suppressing the index

J) TN (s) = T (N, τ), treat N as a continuous variable and expand

TN±1(N, τ) = T (N, τ) ± ∂

∂N
T (N, τ) +

1

2

∂2

∂N2
T (N, τ) + . . . . (4.1)

Then, keeping only terms up to two derivatives, we get a differential equation of the form

[

∂2

∂N2
+ 2

1 − cN (1 + τ2)2

1 + cN (1 + τ2)2
∂

∂N
+ 2

1 − aN − bN (1 + τ2) + cN (1 + τ2)2

1 + cN (1 + τ2)2

]

T (N, τ) = 0.

(4.2)

Let us assume now that the coefficients of the recurrence relation can be expanded at large

N as

aN = a(0) + a(1) 1

N
+ a(2) 1

N2
+ . . . , (4.3)

and similarly for bN and cN . Then, the second order differential equation (4.2) has a finite

non-trivial Migdal limit if and only if the following conditions are met:

c(0) = 1,

2 − a(0) − b(0) = 0, (4.4)

c(1) − a(1) − b(1) = 0.

As long the norm of the orthogonal polynomials can also be expanded at large N (with

a finite number of terms with positive powers of N), the first condition is satisfied. The

second condition is ensured by Rakhmanov’s theorem [18]: if the measure dφ is supported

in [−1, 1] and φ′ > 0 almost everywhere in [−1, 1], then it belongs to the Nevai class3

with ā(0) = 2 and b̄(0) = 0. The assumptions of the theorem are fulfilled by the measure

of Stieltjes functions, in the variable x = 2λ−1w − 1. Even though the coefficients of

the recurrence relation in this variable are different, when λ = 1 (for which (4.4) apply),

the value of an + bn is unchanged. On the other hand, a(0) = ā(0), b(0) = b̄(0) for the

class of norms just mentioned. The third condition is more restrictive. Even if it is norm

dependent, it cannot be adjusted without spoiling our assumption that the coefficients can

be expanded in 1/N . We check explicitly below that this condition is fulfilled by Jacobi

polynomials.

If all three conditions are met, we find for N → ∞ the following second-order differ-

ential equation:

[

d2

dτ̃2
− c(1) 1

τ̃

d

dτ̃
+ (2 − b(0)) + (c(2) − a(2) − b(2))

1

τ̃2

]

T (τ̃) = 0. (4.5)

3Measures in the Nevai class are those with finite limits ān → ā(0), b̄n → b̄(0) [17].
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In the case of standardized Jacobi polynomials P
(α,β)
n with any α and β we have, going

back to the variable w, a(0) = 4, a(1) = −2, b(0) = −2, b(1) = 1, c(0) = 1 and c(1) = −1 so

we see explicitly that all the conditions (4.4) are directly satisfied. In this case, (4.5) reads

[

d2

dτ̃2
+

1

τ̃

d

dτ̃
+ 4 − α2

τ̃2

]

T (τ̃) = 0. (4.6)

This is a Bessel equation, with general solution

T (τ̃) = C1Jα(2τ̃) + C2Yα(2τ̃). (4.7)

Actually, in the more general case of eq. (4.5) we can write T (τ̃) = τ̃ (1+c(1))/2V (τ̃) and

rescale the variable to σ̃ =
(

√

2 − b(0)/2
)

τ̃ . Then, V (σ̃) obeys (4.6) with τ̃ → σ̃ and

α2 = a(2)+b(2)−c(2)+
(

1 + c(1)
)2

/4. Note that the common factor τ̃ (1+c(1))/2 will cancel out

in the quotient R/S. Actually, this factor comes from the normalization of the orthogonal

polynomials. On the other hand, the rescaling of τ̃ amounts to a rescaling of µ̃. Therefore,

we see that, as far as the Migdal limit is concerned, and if the limit exists, it is sufficient

to consider the limit of Jacobi polynomials and work with equation (4.6).

When the third condition is not fulfilled, the recurrence relation does not have a good

Migdal limit. In these cases, one could still try to find a continuous differential equation

by modifying the way in which the limit is taken, and this was actually done (in a different

language) in Migdal’s original paper [8]. In the following we consider only the simplest

case in which the Migdal limit, as defined here, is finite. We have seen that this reduces to

studying the Padé approximants of “conformal” functions fn and fν.

5. The AdS/Migdal correspondence

In this section, we describe the general relation between the Migdal approximation and

extra dimensions, for two-point functions. We give a simple argument showing that the

Migdal limit unavoidably gives a result which corresponds to a holographic calculation

in certain 5D geometries. The converse result does not always hold: in some cases the

holographic results cannot be obtained from a Migdal approximation to their asymptotic

Euclidean functions. In order to simplify the notation we consider correlators of scalar

operators, and comment at the end on the generalization to higher spins.

We start with the field theory (Migdal) side, and show that analyticity4 and the con-

dition of finite Migdal limit, together with information about the deep Euclidean limit and

the leading infrared behaviour, completely fix the two-point function ΠMigdal(t). We have

seen at the end of the previous section that a good Migdal limit necessarily gives numera-

tors R and denominators S which satisfy the differential equation (4.6). Therefore, R and

S have the form (4.7), with coefficients C1,2 which are functions of τ .5

4The numerators and denominators are analytic in s since they are finite limits of polynomials, and

hence convergent Taylor series at s = 0.
5We are treating τ = p/µ and τ̃ = p/µ̃ as independent variables. In the following we also need to use

the behaviour in the variable p2, for fixed µ, µ̃.
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Now, let us impose the asymptotic value of the two-point function. The limit |τ̃ | → ∞
is equivalent to N → ∞ with fixed τ . Hence, for any non-positive τ2, the Padé approximant

converges to f(τ2 + 1). Therefore, the Migdal limit of the Padé approximant must have

the form
R

S
=

f(τ2 + 1)Jµ(2τ̃ ) + A(τ)H
(1)
µ (2τ̃ )

Jµ(2τ̃ ) + B(τ)H
(1)
µ (2τ̃ )

, (5.1)

with H
(1)
µ the first Hankel function, which goes to zero exponentially for large positive

imaginary part of the argument.

Next, we impose that R and S be analytic in p2 at p2 = 0. This fixes the functions

A(τ) and B(τ). Recall that for integer n, Jn(z) is an entire function and Yn(z) equals

2/π log z plus an entire function, whereas for any µ, z−µJµ(z) is entire. Consider first

fn(s) = −τ2n log(−τ2). Then, the index of the Bessel functions must be an integer, and

R

S
=

−τn−m log(τ2)Jn+m(2τ̃ ) + πτn−mYn+m(2τ̃ )

τ−n−mJn+m(2τ̃ )
. (5.2)

On the other hand, for fν(s) = (−1)[ν]+1(−τ2)ν and ν a non-integer real, analyticity

requires µ = ν + m with integer m, and

R

S
=

(−1)[ν]+1τν−mJ−ν−m(2τ̃ )

τ−ν−mJν+m(2τ̃ )
. (5.3)

Finally, we use the fact that the Padé approximants have no poles or zeros at p2 = 0,

and assume that this still holds in the Migdal limit.6 The leading behaviour at small p2 is

R/S ∼ p−2m in all cases. Hence, we see that m = 0 and this gives the final result for R/S.

Now, let us define the Migdal two-point function as ΠJ,l
N = t−l[N + J/N ]tlf , with integer l.

As discussed above, we should only consider l > −1 − ν. Since R/S has no poles or zeros

at p2 = 0, Πl
Migdal will have a zero of degree −l if l < 0, and a pole of degree l if l > 0. On

the other hand, the asymptotic behaviour is independent of l. So, we can use the result

above with m = l and find

Πl
Migdal =

−tn log(t)Jn+l(2
√

t̃) + πtnYn+l(2
√

t̃)

Jn+l(2
√

t̃)
, (5.4)

Πl
Migdal =

(−1)[ν]+1tνJ−ν−l(2
√

t̃)

Jν+l(2
√

t̃)
, (5.5)

in the integer and non-integer cases, respectively. Conversely, we see that we can repro-

duce a low-energy behaviour ∼ p−2l in the two-point function simply by choosing l in the

definition of the Migdal two-point function.

We turn now to the holographic calculations in 4+1 dimensions. In order to keep 4D

Poincaré invariance, the geometry must be a warped direct product of Minkowski times a

one dimensional space I, which can be chosen flat. In order to have a discrete spectrum,

6This may be proven using the asymptotic distribution of zeros of the orthogonal polynomials.
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I must be compact. As long as the warp factor is strictly monotonic, one can define

coordinates in which the metric is manifestly conformally flat:

ds2 = ξ(z)2
(

dxµdxµ − dz2
)

. (5.6)

In the coordinate z, I = [zUV, zIR]. AdS geometry corresponds to ξ(z) = (kz)−1; in this

case, the UV (IR) boundaries at zUV (zIR) hide the AdS boundary (horizon) at z = 0 (z =

∞). The holographic prescription to calculate correlation functions of field-theory operators

at large N (and strong t’Hooft coupling) is given by the AdS/CFT correspondence [2]:

calculate the value of the action for on-shell bulk fields with fixed UV boundary values,

which act as sources for the dual operators; then, differentiate functionally with respect to

the sources and put them to zero. For two-point functions, the on-shell action reduces to

a boundary term. For scalars,

Π(p) = lim
zUV→0

{

X

[

∂zG(z, p)

G(z, p)

]

z→zUV

+ counterterms

}

, (5.7)

where G(z, p) is the bulk-to-boundary propagator in a mixed position-momentum repre-

sentation, fulfilling some specified boundary conditions on the IR boundary and free on

the UV. X is a p-independent factor which cancels a divergent factor in the non-analytic

part in the limit zUV → 0. The remaining counterterms in (5.7) form a polynomial in p2

which cancels the poles at zUV = 0. The propagator G satisfies the equation of motion

for the dual field. We can write a generic IR boundary condition as Ĝ(zIR, p) = 0, with

f̂(z, p) = κ1(p
2z2)f(z, p)+κ2(p

2z2)z∂zf(z, p). Such a boundary condition can be obtained

including mass, kinetic and higher-derivative terms localized on the IR boundary. Indeed,

higher derivatives of G in the variable z can be written in terms of G and ∂zG using the

bulk equation of motion. Let J and Y be two independent solutions of the equation of

motion. Then, we can write

G(zIR, p) = Ĵ(zIR, p)Y (z, p) − Ŷ (zIR, p)J(z, p) . (5.8)

Taking the limit, the holographic formula in which the IR conditions are manifest has the

form

Π(p) =
A1(p)Ĵ(zIR, p) − A2(p)Ŷ (zIR, p)

A3(p)Ĵ(zIR, p) − A4(p)Ŷ (zIR, p)
+ local terms. (5.9)

Our aim is to relate the differential equation satisfied by the limit of the Padé numerator

and denominator to a differential equation for K̂(zIR, p) in the variable zIR, where K is any

linear combination of J and Y . Then, meromorphicity, which follows from the discreteness

of the spectrum in a compact space, will imply that the holographic two-point function

will be the same as the Migdal one for some value of l. The function f in the Migdal

approach corresponds to the limit zIR → ∞ of (5.7), with p2 < 0. In fact, for the functions

we are considering, which only depend on p2/µ2, we should take as well a low-energy limit

in which all the scales but |p| (and 1/zIR, which we have sent to zero) go to infinity. Then,

the equivalence of the complete function will hold only in this limit (with finite zIR).
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In terms of the length variable L = 2/µ̃, eq. (4.6) reads
[

d2

dL2
+

1

L

d

dL
+ p2 − α2

L2

]

T (Lp/2) = 0. (5.10)

Note that dimensional analysis plus the fact that p2 appears only as p2T completely fix the

form of this equation. On the other hand, the equation of motion of a scalar of mass M is
[

∂2
z + 3 (∂z log ξ(z)) ∂z + p2 − ξ2(z)M2

]

φ(z, p) = 0. (5.11)

In the case of Dirichlet boundary conditions, κ1 = 1, κ2 = 0, and K̂(zIR, p) = K(zIR, p)

obeys the same equation as φ(z, p):
[

∂2
zIR

+ 3 (∂zIR
log ξ(zIR)) ∂zIR

+ p2 − ξ(zIR)2M2
]

K̂(zIR, p) = 0. (5.12)

We see that, because we are using conformal coordinates, the normalization of the term with

p2 in (5.12) is the same as in (5.10). If M 6= 0, complete agreement with the Migdal equa-

tion (5.10) requires that ξ(z) = (kz)−1, with k a constant with dimensions of mass. There-

fore, the space must be a slice of AdS with curvature k. In this case, 3∂zIR
log ξ = −3/zIR.

To go to the normalization of (5.10) we only need to write K̂(zIR, p) = z2
IRĤ(zIR, p). Then,

for zIR = L and m2 ≡ M2/k2 = α2−4, the equation for Ĥ is exactly the same as eq. (5.10).

From the AdS/CFT relation between the conformal dimension of the operator ∆ and the

mass of the dual field, we see that ∆ = α + 2, as it should (remember that α is the expo-

nent of the asymptotic two-point function, which is determined by conformal invariance).

On the other hand, in the case M = 0, we find agreement with Migdal equation for any

ξ(z) = (kz)η . Then, we define K̂(zIR, p) = z
(1−3η)/2
IR Ĥ(zIR, p) and identify α2 = (3η−1)2/4.

Note that when α 6= 0 there are two different values of η which give the same α. Of course,

for η 6= −1 the geometry is not asymptotically AdS, and the AdS/CFT dictionary linking

masses to conformal dimensions must be modified. In the particular case η = 0 we have

flat space, and we see that the same Dirichlet two-point function, behaving asymptotically

like −(−t)1/2, is found in flat space with a massless scalar and in AdS with m2 = −15/4.

At any rate, adjusting the mass parameter m we can always reproduce Migdal’s differential

equation in AdS with Dirichlet boundary conditions in the IR. Moreover, Dirichlet bound-

ary conditions give a correlator which (for scalars) has not a zero nor a pole at p2 = 0.

Indeed, we can rescale the field with a z-dependent factor such that the mass term in the

equation of motion cancels. This shows that any zero-mode must be flat. But then, the

Dirichlet condition forces it to vanish. This is true for any UV boundary condition. For UV

Dirichlet (Neumann) conditions, this is telling us that the (inverse) two-point function does

not have a pole at zero momentum.7 Therefore, we conclude that IR Dirichlet boundary

conditions correspond to l = 0 in the Migdal approach.

Consider now Neumann boundary conditions, K̂ = ∂zK. As long as M = 0, and for

any η, K̂ satisfies the following second-order differential equation:
[

∂2
zIR

+
3η

zIR
∂zIR

+ p2 − 3η

z2
IR

]

K̂(zIR, p) = 0. (5.13)

7For the relation between holographic correlators and connected correlation functions of the AdS theory,

including the propagator, see the third reference in [5].
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Writing K̂ = z
(1−3η)/2
IR Ĥ, we reproduce Migdal equation (5.10) for α2 = (3η + 1)2/4.

Thus, α2
Dirichlet −α2

Neumann = −3η. For positive α and η ≤ −1/3, αDirichlet −αNeumann = 1.

Furthermore, in this case there would be a zero mode if Neumann boundary conditions were

also used in the UV, so the two-point function has a simple zero. Therefore, IR Neumann

boundary conditions in a massless theory corresponds to choosing l = −1 in the Migdal

approach. On the other hand, if M 6= 0, it is possible to write a second-order differential

equation for K̂, but with coefficients which are not analytic in p2. So, this equation is not

of the Migdal form and we cannot reproduce the holographic function within the Migdal

approach.

Let us study next mixed boundary conditions with κ1 = 1 and κ2 a constant, and

assume η = −1 to start with. Then, the function K̂ satisfies a differential equation of the

Migdal form if and only if κ2 = 2±
√

4+m2

m2 . After rescaling, we find α2 = 5+m2∓2
√

4 + m2,

respectively. It turns out that this boundary condition, which can be understood as arising

from a mass term localized on the IR brane, is automatic when the scalar field is the

supersymmetric partner of a fermion or a gauge boson [19]. In this case, a fine-tuned

mixed UV boundary condition arises as well, such that a zero-mode results. Therefore,

this corresponds again, up to local terms, to a Migdal function with l = −1. On the other

hand, if M = 0 and η arbitrary, κ2 = 1/(3η − 1) and α2 = [3(η − 1)/2]2. Note that

the remaining solution which would correspond to infinite κ2, is the one studied in the

Neumann case.

It is also possible to reproduce any integer value of l with l+αDirichlet > −1 by choosing

adequate analytic functions κ1 and κ2. This can be proven showing that a good differential

equation for K̂ is obtained for discrete values of the coefficients (depending on the mass) in

the expansions of κ1 and κ2, and studying their behaviour at small momentum. Describing

this in detail would be lengthy, so we simply observe that these properties follow quite

straightforwardly from the differential-recursion relations of Bessel functions and leave the

details to the interested reader.

So, to summarize, every Migdal approximation of a two-point function in the (finite)

Migdal limit can be reproduced by an AdS calculation with a given mass and fine-tuned

boundary conditions. The Euclidean asymptotic behaviour is determined by the mass,

whereas the different discrete choices of the parameter l, which controls the leading be-

haviour at p2 = 0, correspond to different discrete IR boundary conditions in AdS. The

converse is not true: not for any mass and IR boundary condition can one find an equiva-

lent Migdal approximation. One can alternatively reproduce the Migdal calculations using

a different warped geometry when the mass of the dual field vanishes. In all cases, the in-

frared Migdal parameter µ̃ is proportional to the inverse of the position of the IR boundary

in the conformal coordinates (the ones for which the metric is manifestly conformally flat).

All this discussion can be readily extended to higher integer spins. Ultraviolet confor-

mal invariance determines the form of the two-point function in the UV as

〈OiOj〉 = Zij(p)/p2nf(p2 + 1), (5.14)

where i, j represent Lorentz indices and Zij is a tensor, polynomical in pµ. We choose

n such that Zij/p
2n be adimensional. For instance, for a vector operator of conformal
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Figure 2: The moose diagram for our deconstruction setup

dimension ∆,

Zµν =

(

2(∆ − 2)

∆ − 1
pµpν − ηµνp2

)

(5.15)

and n = 1. For a conserved current, ∆ = 3 and we get a transverse function. We can

directly apply Migdal’s approximation to f , and define

Πl
Migdal ij = Zij(p)/p2nΠMigdal(p

2)l. (5.16)

This keeps the tensorial form dictated by conformal invariance. On the other hand, the

holographic calculation will preserve the conformal tensor structure if the geometry is that

of a slice of AdS. It will also preserve this form for any metric in the case of completely

antisymmetric tensors which are dual to p-forms, due to gauge invariance. Therefore, the

results we have obtained for massless scalars can be generalized to higher p-forms, and in

particular to gauge fields. For instance, the unphysical example in section 2 with asymptotic

behaviour Π(p2) ∼ p corresponds to a gauge field in flat space. An AdS calculation with

a vector field with m2 = −3/4 (corresponding to conformal dimension 5/2) and adequate

boundary terms would reproduce the scalar function Π(p2), but not a transverse tensor.

Finally, in extending the discussion for scalars to tensors, one should also take into account

that the coefficients in the second term of the equation of motion (5.11) will be different,

which leads to a different normalization and to a different relation between m and α (or,

equivalently, between m and ∆). For vector bosons, the coefficient 3 is changed to 1 and

αDirichlet =
√

1 + m2.

6. Deconstruction and holography

In the previous section we have studied the Migdal limit of Padé approximants. In this

one, we relate the approximants with finite N to deconstruction models. In particular, this

makes explicit the mechanism by which Migdal correlators approach the holographic ones,

and how a discrete version of the holographic formula (5.7) is realized by the Padé approx-

imants. For definiteness, we will stick to the case of gauge bosons — dual to conserved

currents — and discuss Dirichlet and Neumann conditions only.

We consider a deconstruction model corresponding to the moose diagram sketched in

figure 2. It involves a chain of N SU(NF ) groups with the gauge fields Aj
µ = Aj,a

µ T a,

j = 1 . . . N . The groups communicate with nearest neighbours via bifundamental non-

linear sigma model field Uj, referred to as the links. They are unitary NF × NF matrices

with determinant equal to 1. The role of the last non-linear sigma field U is to control the

boundary conditions for the gauge field (the analogue of IR boundary conditions in 5D).
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At the left end of the chain we singled out the “boundary” gauge field A0
µ. Similarly as

in AdS/CFT, this boundary field is interpreted as an external current probing the dynamics

of the “bulk” model. Here, the bulk refers to the remaining gauge fields Aj
µ, j ≥ 1. The

latter will show up as resonances in the boundary field correlation function.

In the following we calculate the two-point correlation function of the boundary fields in

deconstruction. We do it first in the more familiar minimal deconstruction set-up, and then

in what we call tilted deconstruction, which contains additional interactions between the

neighbouring sites. Correlators obtained in tilted deconstruction turn out to be directly

related to Migdal’s Padé approximants and we work out a dictionary between the two

approaches.

6.1 Minimal deconstruction

The gauge transformations ωj , j = 0 . . . N , act as Aj
µ → ωjAµωj

† − i∂µωjωj
† and Uj →

ωj−1Ujωj
†. The simplest non-trivial action that is invariant under these transformations

can be written as

S =

∫

d4x

N
∑

j=1

(

− 1

2g2
j

tr{F j
µνF j

µν} + tr{v2
j DµUjDµU †

j }
)

+

∫

d4xtr{v2DµUDµU †} , (6.1)

with DµUj = ∂µUj − iAj−1
µ Uj + iUjA

j
µ, DµU = ∂µU − iAN

µ U . This action is minimal in

the sense that the only interactions between various gauge fields come from the covariant

derivatives acting on the links. The relation of this deconstruction setup to 5D gauge

theories can be worked out analogously as in [14]. Consider the 5D action for a gauge field

in the background ds2 = a2(z)dx2 − b2(z)dz2:

S5D =

∫

d4x

∫ L

0
dz

√
g

(

− 1

2g2
5

trF 2
MN

)

→
∫

d4x

∫ L

0
dz

(

−b(z)

2g2
5

trF 2
µν +

a2(z)

g2
5b(z)

tr(∂5Aµ)2
)

. (6.2)

Latticizing the 5th coordinate, z → zj = j∆, ∂5f(z) → (f(zj) − f(zj−1))/∆ we obtain:

S5D →
∫

d4x

N
∑

j=1

(

−b(zj)∆

2g2
5

trF 2
µν(zj) +

a2(zj)

g2
5∆b(zj)

tr(Aµ(zj) − Aµ(zj−1))
2

)

. (6.3)

This can be mapped onto the deconstruction action (6.1) (in the unitary gauge Uj = 1).

The warp factors and the lattice spacing translate into the parameters of the deconstruction

lagrangian according to the following dictionary:

a(zj) →
vj

v1

g1

gj
, b(zj) →

g2
1

g2
j

, ∆ → 1

g1v1
, g2

5 → g1

v1
. (6.4)

We have fixed a(z1) = b(z1) = 1. In passing we note that discretization in Poincaré

coordinates, b(z) = 1, corresponds to gj = g, while discretization in conformal coordinates,

b(z) = a(z), corresponds to gjvj = gv.
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We can integrate out all the bulk gauge fields and obtain an effective action for the

boundary field. At tree-level, the integrating-out amounts to 1) solving the equations of

motion for the bulk fields in the presence of a background boundary field and 2) inserting

the solution into the deconstruction action. The details of this procedure are given in the

appendix. At the quadratic level, the effective action in the momentum space has the form

Seff =

∫

d4p

(2π)4
v2
1A

0
µ(p)

(

−ηµν +
pµpν

p2

)

A0
ν(p)Π(p2) . (6.5)

The polarization function is given by a compact expression

Π(p2) =
F 1

N (p2)

F 0
N (p2)

+
1

g2
0v

2
1

p2 − 1 , (6.6)

where F j
N is a solution to the equation of motion

(

v2
j+1 + v2

j − p2

g2
j

)

F j
N − v2

j F
j−1
N − v2

j+1F
j+1
N = 0 , (6.7)

subject to a boundary condition at j = N . The boundary condition is controlled by the

parameter v in the lagrangian. The limit v → 0 leads to a deconstructed analogue of the

Neumann boundary condition,

FN+1
N = FN

N , (6.8)

while v → ∞ corresponds to the Dirichlet boundary condition,

FN
N = 0 . (6.9)

Intermediate values of v correspond to mixed boundary conditions. On the other hand, for

g0 → ∞ we recover the case of non-dynamical boundary fields, which can be regarded as

sources.

There are many apparent similarities between polarization functions obtained in min-

imal deconstruction and those derived using the Migdal procedure. Let us point them

out.

i) The correlation function is represented as a ratio of two polynomials in p2:

Π(p2) =
RN (p2)

SN (p2)
, (6.10)

where

RN = F 1
N + F 0

N

(

p2

g2
0v

2
1

− 1

)

SN = F 0
N (6.11)

Indeed, from the equation of motion (6.7) F j
N is a polynomial of degree N − j in p2,

once we set FN
N = const (in the Dirichlet case FN−1

N = const and F j
N has the degree

N − j − 1).

– 20 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
6

ii) The numerator and the denominator satisfy a second-order recurrence relation in the

degree N , and the equation is the same for both. For example, in the Dirichlet case

it is given by (T = R,S):

TN+1(p
2) =

(

1 +
v2
N

v2
N+1

− p2

g2
Nv2

N+1

)

TN (p2) − v2
N

v2
N+1

TN−1(p
2) . (6.12)

This follows from the fact that the solution F j
N satisfying the Dirichlet boundary

conditions can be written as F j
N = YNJj − JNYj, where Jj and Yj are any two

independent solutions to eq. (6.7).

iii) In the limit N → ∞ and for |p2| ¿ v2
1 and p2 < 0, the polarization function obtained

in deconstruction approximates the non-analytic behaviour of the polarization func-

tion in the corresponding 5D model in the deep Euclidean regime. For example, in

the deconstructed AdS models one obtains [13] Π(p2) ∼ −p2 log(−p2/v2
1), while in

the deconstructed flat models we find Π(p2) ∼ p2(−p2/v2
1)

−1/2.

In spite of these similarities it is not possible to find a precise mapping between the

Migdal approximation and minimal deconstruction. The reason is that the recurrence rela-

tions (6.12) and (3.23) are incompatible. Indeed, the form of the recurrence relation (6.12)

implies that TN (p2) is an orthogonal polynomial in the variable p2. On the other hand,

the numerators and denominators obtained by the Migdal procedure, although related to

orthogonal polynomials by eq. (3.12), are themselves not orthogonal polynomials.

In the following we explore a modified deconstruction framework that allows for a

mapping of the boundary correlators to those obtained using the Migdal approximation.

6.2 Tilted deconstruction

We modify the minimal deconstruction action (6.1) adding a kinetic mixing between neigh-

bouring gauge fields,

S =
∫

d4x
∑N

j=1

(

− 1
2g2

j

tr{F j
µνF j

µν} + tr{v2
j DµUjDµU †

j }
)

+
∫

d4xtr{v2DµUN+1DµU †
N+1}

−
∫

d4x
∑N

j=1
αj

2g2
j

tr{F j−1
µν UjF

j
µνU †

j + h.c.} +
∫

d4x 1
2g2 tr{FN

µνFN
µν} (6.13)

Such deconstruction setup is also related to a latticized 5D gauge theory in the warped

background. The difference with the minimal case is that the 5D action must contain a

higher derivative term breaking the 5D Lorentz invariance:

S5D →
∫

d4x

∫ L

0
dz

(

−b(z)

2g2
5

trF 2
µν +

a2(z)

g2
5b(z)

tr(∂5Aµ)2 − α(z)

2g2
5

trFµν∂2
zFµν

)

. (6.14)

The dictionary between deconstruction and 5D is now given by:

a(zj) → vj+1

v1

g1

gj

√
1−αj√
1−α1

, b(zj) → g2
1

g2
j

1−αj

1−α1
, α(z) → αj

g2
j v2

1
,

∆ →
√

1−α1

g1v1
, g2

5 → g1

v1
√

1−α1
. (6.15)
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We see that tilted deconstruction corresponds to a 5D setup with some specific higher-

derivative terms. Nevertheless, the extra term is irrelevant at low energies and a standard

lowest-order 5D action is recovered. Hence, the effect of the mixing term amounts to a

renormalization of the coefficients in this action. Viewed as a 4D field-theoretical model,

tilted deconstruction is healthy as long as the mixing coefficients αj are not too large (so

that there are no ghosts).

As in the minimal setup, it makes sense to integrate out the resonances Aj
µ, j ≥ 1 and

calculate the effective action for A0
µ. The polarization function is given by (see appendix A

for a derivation)

Π(p2) =
F 1

N (p2)

F 0
N (p2)

(

1 +
α1

g2
1v

2
1

p2

)

+
1

g2
0v

2
1

p2 − 1 . (6.16)

The last two terms have a form of a local polynomial in p2. By adding higher derivative

terms for the boundary fields to the deconstruction action we could, in fact, obtain an

arbitrary polynomial in p2.

In tilted deconstruction, F j
N solve a modified equation of motion

(

v2
j+1 + v2

j − p2

g2
j

)

F j
N −

(

v2
j +

p2αj

g2
j

)

F j−1
N −

(

v2
j+1 +

p2αj+1

g2
j+1

)

F j+1
N = 0 , (6.17)

subject to the boundary condition

(

v2
N+1 − v2 +

1

g2
p2

)

FN
N =

(

v2
N+1 +

αN+1

g2
N+1

p2

)

FN+1
N . (6.18)

In the limit v → ∞ we obtain Dirichlet boundary conditions, FN
N = 0, while setting v = 0,

αN+1/g
2
N+1 = 1/g2 leads to Neumann boundary conditions, FN+1

N = FN
N .

We will prove that, for certain choices of the coefficients αj , the polarization functions

obtained in this setup are directly related to those obtained by Migdal approximation.

6.3 Migdal-deconstruction map

Let us make the following ansatz for the mixing coefficients:

αj

g2
j

=
v2
j

µ2
, (6.19)

where µ is an arbitrary scale. We also introduce a new variable, s = 1 + p2/µ2. The

equation of motion now becomes

(

v2
j+1 + v2

j +
µ2

g2
j

− s
µ2

g2
j

)

F j
N (s) − v2

j sF
j−1
N (s) − v2

j+1sF
j+1
N (s) = 0 . (6.20)

We find it convenient to discuss the Dirichlet and the Neumann case separately.
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Dirichlet boundary conditions. We investigate the solutions to eq. (6.20) subject to

the boundary condition FN
N = 0. If we set FN−1

N = const then sjFN−j−1
N (s) is a polynomial

in s of degree j. We define the polynomials

R1
N (s) = sN+1F 1

N+1(s), S1
N (s) = sNF 0

N+1(s). (6.21)

It follows that SN has degree N , while RN has degree N+1. From eq. (6.16) the polarization

function can be written as

Π(s) =
R1

N (s)

S1
N(s)

+ f0 + f1s (6.22)

and has the form of a Padé approximant with J = 1. Indeed, the numerator and the

denominator as defined in eq. (6.21) satisfy the second order difference equation

T 1
N+1(s) =

(

1 +
v2
N+1

v2
N+2

+
µ2

g2
N+1v

2
N+2

− µ2

g2
N+1v

2
N+2

s

)

T 1
N (p2) − v2

N+1

v2
N+2

s2T 1
N−1(s) , (6.23)

subject to the boundary conditions

R1
0(s) = 0, R1

1(s) = constant, S1
−1(s) = 0, S1

0(s) = constant (6.24)

Equations (6.23) and (6.24) follow simply from the fact that the solution F j
N+1 satisfying

Dirichlet boundary conditions can be written as F j
N+1 = YN+1Jj − JN+1Yj, where Jj and

Yj are any two independent solutions to eq. (6.20). They have exactly the same form, up to

local terms, as the recurrence equations and the boundary conditions for the denominators

and the numerators of Padé approximants.

In fact, the recurrence relation in Padé approximation contains three sets of coefficients

aN , bN and cN , which define the related orthogonal polynomial. On the deconstruction

side we dispose only of two sets: gN and vN . However, since rescaling of the numerator and

the denominator by the same function does not change the polarization function, Migdal

approximation and deconstruction are equivalent if the recurrence equations can be brought

to the same form after rescaling T 1
N by an arbitrary function, T 1

N → hNT 1
N . Taking this

into account leads to the norm-independent consistency conditions:

g2
N+1(v

2
N+2 + v2

N+1)

µ2
= −1 − aN

bN

g2
Ng2

N+1v
4
N+1

µ4
=

cN

bN bN−1
(6.25)

Thus, given aN , bN and cN defining the orthogonal polynomial corresponding to the Padé

approximants, we are able to reconstruct the (tilted) deconstruction model that would give

exactly the same polarization function. Furthermore, using the dictionary (6.15) we can

find the continuum background.

Let us now investigate what deconstruction model corresponds to the Padé approxi-

mants found in section 2. Those examples where all associated with Jacobi polynomials
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Pα,β
N (2s − 1), whose recurrence relation involves the coefficients

aN =
(2N + α + β + 1)(2N + α + β + 2)

(N + 1)(N + α + β + 1)
,

bN =
(2N + α + β + 1)(α2 − β2 − (2N + α + β)(2N + α + β + 2))

2(N + 1)(N + α + β + 1)(2N + α + β)
,

cN =
(N + α)(N + β)(2N + α + β + 2)

(N + 1)(N + α + β + 1)(2N + α + β)
. (6.26)

For large N the consistency equations can be approximated by:

g2
N+1(v

2
N+2 + v2

N+1)

µ2
= 1 +

α2 − β2

2

1

N2
+ O(1/N3) ,

g2
Ng2

N+1v
4
N+1

µ4
=

1

4
+

1 − 4β2

16

1

N2
+ O(1/N3). (6.27)

They can be approximately solved by

v2
N+1

v2
N

= 1 +
1 ± 2α

N
+ O(1/N2) ,

g2
N+1

g2
N

= 1 − 1 ± 2α

N
+ O(1/N2) ,

g2
Nv2

N

µ2
=

1

2

(

1 − 1 ± 2α

2N
+ O(1/N2)

)

. (6.28)

The corresponding deconstruction background, at lowest order, does not depend on β. We

see that α = 1/2 can be matched to flat deconstruction with gN and vN independent of

N . On the other hand, α = 1 is equivalent to deconstruction with

v2
N ≈ v2

1

1

N
, g2

N ≈ 1

2
g2
1N , (6.29)

which by eq. (6.15) is deconstruction of AdS5 gauge theories latticized in conformal coor-

dinates.

Neumann boundary conditions. The results for the Neumann boundary conditions

FN+1
N = FN

N can be obtained in an analogous way, and below we simply give our results.

We define the polynomials:

R0
N (s) =

1

s − 1
sN (sF 1

N (s) − F 0
N (s)) S0

N (s) = sNF 0
N (s) (6.30)

Both RN and SN are polynomials of degree N in s (one can show that the factor 1/(s− 1)

always cancels out). The polarization function can be written as

Π(s) =
p2

µ2

(

R0
N (s)

S0
N (s)

+ f0

)

(6.31)
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and has the form of a Padé approximant with J = 0. The polynomials satisfy a recurrence

relation that is different from the Dirichlet case:

T 0
N+1(s) =

(

v2
N+1(g

2
N + g2

N+1) + µ2

g2
N+1v

2
N+2

− µ2

g2
N+1v

2
N+2

s

)

T 0
N (p2) − g2

Nv2
N

gN+1v2
N+2

s2T 0
N−1(s) .

(6.32)

In obtaining this equation, the correlation between the coefficients of (6.20) is crucial.

Adding a mass term would spoil this correlation and the resulting recurrence relation in

the Neumann case would not be of the Padé form. This agrees with our discussion of the

continuum extra dimensions. The initial conditions are

R0
0(s) = 0, R0

1(s) = constant, S0
−1(s) = 0, S0

0(s) = constant . (6.33)

The recurrence relation and the initial conditions agree with the ones for the Padé numer-

ators and denominators, as long as the consistency conditions

v2
N+1(g

2
N+1 + g2

N )

µ2
= −1 − aN

bN

g4
Nv2

Nv2
N+1

µ4
=

cN

bNbN−1
(6.34)

are fulfilled. For Jacobi polynomials on the Migdal side, the large-N approximate solution

is given by

v2
N+1

v2
N

= 1 − 1 ± 2α

N
+ O(1/N2)

g2
N+1

g2
N

= 1 +
1 ± 2α

N
+ O(1/N2)

g2
Nv2

N

µ2
=

1

2

(

1 +
1 ± 2α

2N
+ O(1/N2)

)

. (6.35)

We can see that α = −1/2 is reproduced by flat deconstruction with gN and vN independent

of N , while α = 0 corresponds again to deconstruction of AdS5 in conformal coordinates,

v2
N ≈ v2

1

1

N
, g2

N ≈ 1

2
g2
1N . (6.36)

These results are very welcomed, as they show that a single deconstruction setting is able

to reproduce the values l = 0 and l = 1 in the Migdal approximation, just by a change of

the IR boundary condition.

7. Conclusions

In this paper we have studied the relations between three different methods of computing

correlation functions in strongly-coupled large-Nc theories: the Migdal approach via Padé

approximants, the 5D holographic approach via boundary correlators, and the deconstruc-

tion approach via external field correlators. We have made explicit the connection between
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the Migdal approximation and the other two methods. The key feature of the Padé approx-

imant is that its denominator and numerator can be expressed in terms of some orthogonal

polynomial and their associated orthogonal polynomial, respectively. This ensures physical

properties of the Padé approximants analogous to those of large-Nc theories. Furthermore,

the recurrence relations satisfied by the orthogonal polynomials provide a link with local

equations of motion in the other two approaches.

An interesting common feature is that a discrete spectrum is obtained thanks to a

violation of quark-hadron duality [20] that is introduced by hand, either by keeping a

constant t̃ = N2p2/µ2 in the Migdal limit or by cutting off the space with the IR brane.

Locality implies that the deviation from the perturbative result in the Euclidean region

is exponentially suppressed (oscillating in the Minkowski region). In position space, it

corresponds to singularities at a finite distance ∼ zIR, which are not seen by the OPE. As

discussed in [20, 21], different duality violations, with singularities at infinity, appear in

models with linear Regge trajectories, such as the infinite-dimensional holographic model

in [22].

We have considered the large-N Migdal limit, in which N2p2/µ2 is constant. This

forced us to restrict the input functions to the ones that have a conformal form. On

the other hand, conformality in the UV is related to asymptotically-AdS5 spaces. The

non-trivial fact that we have explored here is that Migdal’s approximation extrapolates

this conformal/AdS character all the way down from the UV to the IR, up to an abrupt

IR cutoff/brane.8 This is related to the particular limit we are considering. It would

be interesting to investigate non-conformal input functions, which arise at higher orders of

perturbation theory. This would require a different Migdal limit, and it could be speculated

that a softer IR cutoff would be generated (possibly involving an infinite extra dimension,

as in [23]). Conformality is also broken by power corrections which, in this context, were

discussed in [10]. It would also be interesting to study the correspondence for higher-point

correlators [24].

The relation between Padé approximation and holographic calculations in 5D or de-

construction could be regarded as a mere mathematical curiosity. However, we expect it to

have physical consequences as well. In fact, the Migdal program relies on dispersion rela-

tions and is similar in spirit to the SVZ sum rules, which have a solid theoretical basis. The

connection with 5D models might shed some light on the unexpected success of AdS/QCD

models [6]. Furthermore, Padé approximation is often employed as a unitarization method

to extrapolate the predictions of chiral perturbation theory in QCD [25] and in no-Higgs

models of electroweak breaking [26] to higher energies. This approach is complementary to

Migdal’s, for it goes from low to high energies rather than the other way round.9 On the

8We have also seen that a similar extrapolation is at work in other conformally flat spaces in the massless

case.
9In [27], it has been pointed out that, because the exact (large-Nc) two-point function is a Stieltjes func-

tion, if the chiral contributions to all orders were known, then the large-N limit of the corresponding Padé

approximants would exactly reproduce the full two-point function, at arbitrary momenta. In particular,

this puts restrictions on the allowed chiral coefficients, directly related to the ones which can be derived

from dispersion relations [28].

– 26 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
6

other hand, alternative unitarization procedures using the notion of extra dimensions have

been introduced more recently: the so-called higgsless electroweak breaking [29] and its

deconstructed version [30]. Our results suggest that these seemingly unrelated approaches

could be equivalent, although to prove it we should study the Padé approximants with a

low-energy, rather than high-energy, input.
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A. Derivation of the boundary effective action in deconstruction

We derive here the holographic formula for the two-point correlation function of the

“boundary” fields in deconstruction. We work in the tilted deconstruction framework;

the minimal deconstruction result can be obtained by setting αj = 0.

The tilted deconstruction action can be rewritten as

S =
1

2

∫

d4p

(2π)4







N
∑

j,k=0

Aj
µDjk

µνAk
µ







, (A.1)

where the kinetic operator is defined as

Djk
µν = (−p2ηµν + pµpν)

(

1

g2
j

δj,k +
αj

g2
j

δj−1,k +
αj+1

g2
j+1

δj+1,k

)

(A.2)

+ηµν

(

(v2
j + v2

j+1)δj,k − v2
j δj−1,k − v2

j+1δj+1,k

)

.

For D00
µν , v0 ≡ 0 is understood. Our objective is to obtain an effective action for the

boundary field A0
µ after integrating out all resonances Aj

µ with j ≥ 1. At tree-level, this

can be achieved by solving the equations of motion for the resonances with the boundary

background field switched on,

N
∑

k=0

Djk
µνAk

ν = 0 j ≥ 1 , (A.3)

and inserting the solution back into the action (A.1). The solution can be written as

Aj
µ =

(

ηµν − pµpν

p2

)

F j
N (p2)

F 0
N (p2)

+
pµpν

p2

F j
N (0)

F 0
N (0)

, (A.4)

where F j
N (p2) solves the recurrence relation in j,

(

v2
j+1 + v2

j − p2

g2
j

)

F j
N −

(

v2
j +

p2αj

g2
j

)

F j−1
N −

(

v2
j+1 +

p2αj+1

g2
j+1

)

F j+1
N = 0 , (A.5)
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subject to appropriate boundary conditions: FN
N = 0 in the Dirichlet case and FN+1

N = FN
N

in the Neumann case. Inserting the solution back into the action we obtain

Seff =
1

2

∫

d4p

(2π)4
v2
1

{(

−ηµν +
pµpν

p2

)

A0
µΠ(p2)A0

ν +
pµpν

p2
A0

µA0
ν

F 1
N (0) − F 0

N (0)

F 0
N (0)

}

. (A.6)

The second term vanishes in the Neumann case, while in the Dirichlet case it is cancelled

by tree-level exchange of a massless physical Goldstone boson. Finally, the polarization

operator is given by

Π(p2) =
F 1

N (p2)

F 0
N (p2)

(

1 +
α1

g2
1v

2
1

p2

)

+
1

g2
0v

2
1

p2 − 1 . (A.7)
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